题目内容

14.(文)已知$f(x)=\frac{{{x^2}-6x-3}}{x+1}$,且定义域为[0,1],则函数f(x)的最小值为-4.

分析 先对函数式裂项得$f(x)=\frac{{{x^2}-6x-3}}{x+1}$=(x+1)+$\frac{4}{x+1}$-8,再用基本不等式对函数求最值.

解答 解:$f(x)=\frac{{{x^2}-6x-3}}{x+1}$=$\frac{(x+1)^2-8(x+1)+4}{x+1}$
=(x+1)+$\frac{4}{x+1}$-8,
因为,x∈[0,1],所以,x+1∈[1,2],
因此,(x+1)+$\frac{4}{x+1}$≥2•$\sqrt{(x+1)•\frac{4}{x+1}}$=4,
当且仅当,x+1=2,即x=1时,取“=”,
所以,f(x)min=f(1)=-4,
故答案为:-4.

点评 本题主要考查了基本不等式在求函数最值中的应用,以及取等条件的分析,考查了对分式“裂项”的运算技巧,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网