题目内容
5.已知点P,A,B,C,D都是直径为4的球O表面上的点,PA⊥平面ABCD,四边形ABCD是正方形,若PA=2,则几何体P-ABCD的体积为$\frac{16}{3}$.分析 可将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,让P与A′重合,则该长方体的对角线PC即为球O的直径(球O为该长方体的外接球),于是可求得PC的长度,进一步可求出底面边长,从而求几何体P-ABCD的体积.
解答 解:依题意,可将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,让P与A′重合,
则球O为该长方体的外接球,长方体的对角线PC即为球O的直径.
设ABCD是边长为a,PA⊥平面ABCD,PA=2,
∴PC2=AP2+2AB2=4+2a2=42,
∴a2=8,
则几何体P-ABCD的体积为V=$\frac{1}{3}$×a2×PA=$\frac{16}{3}$.
故答案为:$\frac{16}{3}$.
点评 本题考查直线与平面垂直的性质,考查球内接多面体的应用,“补形”是关键,考查分析、转化与运算能力,属于中档题.
练习册系列答案
相关题目
10.
已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为( )
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{13}}{4}$ | C. | $\frac{\sqrt{39}}{13}$ | D. | $\frac{\sqrt{39}}{3}$ |