题目内容

20.已知函数f(x)=$\frac{2x}{{{x^2}+1}}$,则下列说法正确的是(  )
A.函数f(x)在(0,+∞)上有最小值B.函数f(x)在(0,+∞)上没有最大值
C.函数f(x)在R上没有极小值D.函数f(x)在R上有极大值

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:f′(x)=$\frac{-{2x}^{2}+2}{{{(x}^{2}+1)}^{2}}$,
令f′(x)>0,解得:-1<x<1,
令f′(x)<0,解得:x>1或x<-1,
故f(x)在(-∞,-1)递减,在(-1,1)递增,在(1,+∞)递减,
故f(x)在R有极大值,
故选:D.

点评 本题考查了函数的单调性、极值、最值问题,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网