ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªÊýÁÐ{an}£¬Èç¹ûÊýÁÐ{bn}Âú×ãb1=a1£¬bn=an+an-1£¨n¡Ý2£¬n¡ÊN*£©£®Ôò³ÆÊýÁÐ{bn}ÊÇÊýÁÐ{an}µÄ¡°Éú³ÉÊýÁС±£®£¨1£©ÈôÊýÁÐ{an}µÄͨÏîΪÊýÁÐan=n£¬Ð´³öÊýÁÐ{an}µÄ¡°Éú³ÉÊýÁС±{bn}µÄͨÏʽ£®
£¨2£©ÈôÊýÁÐ{cn}µÄͨÏîΪÊýÁÐcn=An+B£¬£¨A£¬BÊdz£Êý£©£¬ÊÔÎÊÊýÁÐ{cn}µÄ¡°Éú³ÉÊýÁС±{ln}ÊÇ·ñÊǵȲîÊýÁУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôÊýÁÐ{dn}µÄͨÏʽΪdn=2n+n£¬ÉèÊýÁÐ{dn}µÄ¡°Éú³ÉÊýÁС±{pn}µÄǰnÏîºÍΪTn£¬ÎÊÊÇ·ñ´æÔÚ×ÔÈ»ÊýmÂú×㣨Tn-2014£©£¨Tn-6260£©¡Ü0£¬Èô´æÔÚ£¬ÇëÇó³ömµÄÖµ£¬·ñÔòÇë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©·ÖÀàÌÖÂۿɵõ±n¡Ý2ʱ£¬bn=2n-1£»´Ó¶øÇóͨÏʽ£»
£¨2£©·ÖÀàÌÖÂÛ£¬´Ó¶øÁî2A+2B-A=A+B£¬´Ó¶øÌÖÂۿɵã»
£¨3£©·ÖÀàÌÖÂÛ£¬´Ó¶øÇóµÃp1=3£¬µ±n¡Ý2ʱ£¬pn=3•2n-1+2n-1£»´Ó¶ø²ðÏîÇóÆäºÍ¼´¿É£®
½â´ð ½â£º£¨1£©µ±n=1ʱ£¬b1=a1=1£¬
µ±n¡Ý2ʱ£¬bn=an+an-1=n+n-1=2n-1£»
Ò×Öªµ±n=1ʱÉÏʽҲ³ÉÁ¢£»
¹Ê{bn}µÄͨÏʽΪbn=2n-1£»
£¨2£©µ±n=1ʱ£¬l1=c1=A+B£¬
µ±n¡Ý2ʱ£¬ln=cn+cn-1=An+B+A£¨n-1£©+B=2An+2B-A£»
Áî2A+2B-A=A+BµÃB=0£¬
¹Êµ±B=0ʱ£¬{ln}Ò²ÊǵȲîÊýÁУ¬
µ±B¡Ù0ʱ£¬{ln}²»ÊǵȲîÊýÁУ»
£¨3£©µ±n=1ʱ£¬p1=d1=2+1=3£¬
µ±n¡Ý2ʱ£¬pn=dn+dn-1=2n+n+2n-1+n-1=3•2n-1+2n-1£»
Tn=3+£¨6+3£©+£¨12+5£©+¡+£¨3•2n-1+2n-1£©
=$\frac{3£¨1-{2}^{n}£©}{1-2}$+$\frac{3+2n-1}{2}$•£¨n-1£©
=3£¨2n-1£©+£¨n+1£©£¨n-1£©£¬
=3•2n+n2-4£¬
ÓÉ£¨Tn-2014£©£¨Tn-6260£©¡Ü0Öª£¬
2014¡Ü3•2n+n2-4¡Ü6260£¬ÇÒn¡ÊN£»
½âµÃ£¬n=10£®
µãÆÀ ±¾Ì⿼²éÁË·ÖÀàÌÖÂÛµÄ˼ÏëÓ¦Óü°ÊýÁеÄÐÔÖʵÄÅжÏÓëÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
| A£® | {2£¬3} | B£® | {2£¬3£¬5} | C£® | {1£¬4} | D£® | {1£¬4£¬5} |
| A£® | -4 | B£® | 4 | C£® | $\frac{1}{4}$ | D£® | -$\frac{1}{4}$ |
| A£® | 42 | B£® | 19 | C£® | 8 | D£® | 3 |