题目内容

数列{an}前n项和Sn,已知Sn=
9
8
an-
4
3
×3n+
4
3
,求和
3
S1
+
32
S2
+…+
3n
Sn
3
16
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:由已知得{
1
8
an+4×3n-2
}是首项为4,公比为9的等比数列,从而an=
32
9
(9n-3n)
,进而Sn=9n-16×3n-1+
4
3
,由此得到
3n
Sn
=
3n
9n-16×3n-1+
4
3
=
1
3n-
16
3
+
4
3n+1
=
1
4
3
(
1
3n
+3n+1-4)
,当n≥2时,
3n
Sn
=
1
4
3
(
1
3n
+3n+1-4)
3
4
1
3n+1-4
3
8
×
1
3n
,由此能证明
3
S1
+
32
S2
+…+
3n
Sn
3
16
解答: 解:∵Sn=
9
8
an-
4
3
×3n+
4
3
,①
∴Sn-1=
9
8
an-1-
4
3
×3n-1+
4
3
,②
①-②,得an=
9
8
an
-
9
8
an-1
-
4
3
×3n
+
4
3
×3n-1

整理,得
1
8
an
+4×3n-2=
9
8
an-1
+4×3n-1=9(
1
8
an-1+4×3n-3
),
又a1=S1=
9
8
a1
-
4
3
×3+
4
3
,解得a1=
64
3

1
8
a1+4×3-1
=4,
∴{
1
8
an+4×3n-2
}是首项为4,公比为9的等比数列,
1
8
an
+4×3n-2=4×9n-1
∴an=
32
9
(9n-3n)

∴Sn=
32
9
[
9(1-9n)
1-9
-
3(1-3n)
1-3
]
=4(9n-1)-
16
3
(3n-1)
=9n-16×3n-1+
4
3

3n
Sn
=
3n
9n-16×3n-1+
4
3
=
1
3n-
16
3
+
4
3n+1
=
1
4
3
(
1
3n
+3n+1-4)

当n=1时,
3
S1
=
9
64
3
16

当n≥2时,3n+1-4>2×3n
3n
Sn
=
1
4
3
(
1
3n
+3n+1-4)
3
4
1
3n+1-4
3
8
×
1
3n

3
S1
+
32
S2
+…+
3n
Sn
3
8
1
3
+
1
32
+…+
1
3n

=
3
8
×
1
3
(1-
1
3n
)
1-
1
3

=
3
8
×
1
2
(1-
1
3n

=
3
16
(1-
1
3n
)
3
16

综上所述,
3
S1
+
32
S2
+…+
3n
Sn
3
16
点评:本题考查不等式的证明,解题时要认真审题,注意等比数列的性质、放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网