题目内容
设函数.
(1)当时,求不等式的解集;
(2)若对任意,不等式的解集为空集,求实数的取值范围.
在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为.
(1)将圆的极坐标方程化为直角坐标方程;
(2)过点作斜率为1直线与圆交于两点,试求的值.
向量,则( )
A. B.
C.与的夹角为60° D.与的夹角为30°
若,则的最小值是________.
为了传承经典,促进课外阅读,某市从高中年级和初中年级各随机抽取40名同学进行有关对“四大名著”常识了解的竞赛.下图1和图2分别是高中和初中年级参加竞赛的学生成绩按,,,分组,得到频率分布直方图.
(1)若初中年级成绩在之间的学生中恰有4名女同学,现从成绩在该组的初中年级的学生任选2名同学,求其中至少有1名男同学的概率;
(2)完成下列列联表,并回答是否有99%的把握认为“两个学段的学生对‘四大名著’的了解有差异”?
已知为定义在上的单调递增函数,是其导函数,若对任意的总有,则下列大小关系一定正确的是( )
C. D.
已知直角梯形所在的平面垂直于平面,,,.
(1)若是的中点,求证:平面;
(2)求平面与平面所成的锐二面角的余弦值.
已知虚数满足,则 .