题目内容
9.计算:(1)已知$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,求a+a-1;
(2)$2{(lg\sqrt{2})^2}+lg\sqrt{2}•lg5+\sqrt{{{(lg\sqrt{2})}^2}-2lg\sqrt{2}+1}$.
分析 (1)把已知$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,两边平方,然后化简计算得答案;
(2)直接利用对数的运算法则化简求值即可.
解答 解:(1)由$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,得:$({a}^{\frac{1}{2}}+{a}^{-\frac{1}{2}})^{2}=9$,
∴$({a}^{\frac{1}{2}})^{2}+2{a}^{\frac{1}{2}}•{a}^{-\frac{1}{2}}+({a}^{-\frac{1}{2}})^{2}=9$,
即a+2+a-1=9,
∴a+a-1=7;
(2)$2{(lg\sqrt{2})^2}+lg\sqrt{2}•lg5+\sqrt{{{(lg\sqrt{2})}^2}-2lg\sqrt{2}+1}$
=$\frac{1}{2}$lg2(lg2+lg5)+1-$\frac{1}{2}$lg2
=$\frac{1}{2}$lg2+1-$\frac{1}{2}$lg2
=1.
点评 本题考查对数的运算法则的应用,是基础题.
练习册系列答案
相关题目
19.己知命题p:“a>b”是“2a>2b”的充要条件;q:?x∈R,ex<lnx,则( )
| A. | ¬p∨q为真命题 | B. | p∧¬q为假命题 | C. | p∧q为真命题 | D. | p∨q为真命题 |
17.定义在$[{\frac{1}{π},π}]$上的函数f(x),满足$f(x)=f(\frac{1}{x})$,且当$x∈[{\frac{1}{π},1}]$时,f(x)=lnx,若函数g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零点,则实数a的取值范围是( )
| A. | $[{-\frac{lnπ}{π},0}]$ | B. | [-πlnπ,0] | C. | $[{-\frac{1}{e},\frac{lnπ}{π}}]$ | D. | $[{-\frac{e}{2},-\frac{1}{π}}]$ |
4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{\sqrt{1-x},x<0}\end{array}\right.$,则f(f(-3))=5.
14.复数$\frac{2i}{1-i}+2$的虚部是( )
| A. | -1 | B. | 1 | C. | -i | D. | i |
1.若存在实数a,使得函数$f(x)=\left\{{\begin{array}{l}{-{x^2}+2(a+1)x+4}&{0<x≤1}\\{{x^a}}&{x>1}\end{array}}\right.$在(0,+∞)上为减函数,则实数a的取值范围是( )
| A. | a<0 | B. | a≤-1 | C. | -2≤a≤-1 | D. | -2≤a<0 |
18.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为( )
| A. | $\frac{2}{3}$钱 | B. | $\frac{4}{3}$钱 | C. | $\frac{5}{6}$钱 | D. | $\frac{3}{2}$钱 |
19.过点M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圆x2+y2=1的切线l,l与x轴的交点为抛物线E:y2=2px(p>0)的焦点,l与抛物线E交于A、B两点,则AB中点到抛物线E的准线的距离为( )
| A. | $\frac{5\sqrt{2}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{7}{2}$$\sqrt{2}$ | D. | 4$\sqrt{2}$ |