题目内容
2.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$且f(a)=-3,则f(5-a)=( )| A. | -$\frac{7}{4}$ | B. | -$\frac{5}{4}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{1}{4}$ |
分析 利用导函数的解析式,列出方程求解即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$且f(a)=-3,
当a≤1时,2a-2=-3,无解.
当a>1时,-log2(a+1)=-3,解得a=7.
f(5-a)=f(-2)=2-2-2=$-\frac{7}{4}$.
故选:A.
点评 本题考查分段函数的应用,考查计算能力.
练习册系列答案
相关题目
13.
如图所示:一张正方形状的黑色硬质板,剪去两个一样的小矩形得到一个“E”形的图形,设小矩形的长、宽分别为a,b(2≤a≤10),剪去部分的面积为8,则$\frac{1}{b+1}$+$\frac{9}{a+9}$的最大值为( )
| A. | 1 | B. | $\frac{11}{10}$ | C. | $\frac{6}{5}$ | D. | 2 |
7.用反证法证明“a+b$\sqrt{2}$(a、b∈Z)是无理数”时,假设正确的是( )
| A. | 假设$\sqrt{2}$是有理数 | B. | 假设b$\sqrt{2}$(b∈Z)是有理数 | ||
| C. | 假设a+$\sqrt{2}$(a∈Z)是有理数 | D. | 假设a+b$\sqrt{2}$(a、b∈Z)是有理数 |