题目内容

9.已知y=f(x)是定义在R上的偶函数,其对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,则当f(sinx)>f(cosx)时,x的取值范围(  )
A.(2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈ZB.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈ZD.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

分析 根据偶函数的性质得f(sinx)>f(cosx)?f(|sinx|)>f(|cosx|),由f(x)对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,知f(x)在(-∞,0]上单调递减,所以f(x)在[0,+∞)上单调递增,据单调性即可去掉不等式中的符号“f”.转化后解不等式即可求得所求的范围.

解答 解:因为f(x)为偶函数,
所以f(sinx)>f(cosx)?f(|sinx|)>f(|cosx|)
又由f(x)对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,知f(x)在(-∞,0]上单调递减,所以f(x)在[0,+∞)上单调递增,
所以|sinx|>|cosx|,
所以cos2x<0,
解得x∈(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z.
故选:D.

点评 本题考查函数奇偶性、单调性及其应用,属中档题,解决本题的关键是根据条件判断出函数的单调性,再由奇偶性把问题转为到区间[0,+∞)上解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网