题目内容

17.设数列{$\frac{1}{4{n}^{2}}$}的前n项和为Tn,求证:$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.

分析 由$\frac{1}{4{n}^{2}}$>$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,能证明Tn>$\frac{n}{4n+4}$,由$\frac{1}{4{n}^{2}}<\frac{1}{4{n}^{2}-1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,能证明Tn<$\frac{1}{2}$.由此能证明$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.

解答 证明:∵$\frac{1}{4{n}^{2}}$>$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴Tn>$\frac{1}{4}$(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$)
=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4n+4}$,
又∵$\frac{1}{4{n}^{2}}<\frac{1}{4{n}^{2}-1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn<$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$.
∴$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.

点评 本题考查关于数列的前n项和的不等式的证明,是中档题,解题时要认真审题,注意放缩法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网