题目内容
17.设数列{$\frac{1}{4{n}^{2}}$}的前n项和为Tn,求证:$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.分析 由$\frac{1}{4{n}^{2}}$>$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,能证明Tn>$\frac{n}{4n+4}$,由$\frac{1}{4{n}^{2}}<\frac{1}{4{n}^{2}-1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,能证明Tn<$\frac{1}{2}$.由此能证明$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.
解答 证明:∵$\frac{1}{4{n}^{2}}$>$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴Tn>$\frac{1}{4}$(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$)
=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4n+4}$,
又∵$\frac{1}{4{n}^{2}}<\frac{1}{4{n}^{2}-1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn<$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$.
∴$\frac{n}{4n+4}$<Tn<$\frac{1}{2}$.
点评 本题考查关于数列的前n项和的不等式的证明,是中档题,解题时要认真审题,注意放缩法的合理运用.
| A. | $\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{b}$+$\overrightarrow{a}$ | B. | $\overrightarrow{a}$+$\overrightarrow{0}$=$\overrightarrow{a}$ | C. | $\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{AB}$ | D. | |$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$| |
| A. | (2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈Z | B. | (kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z | ||
| C. | (2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z | D. | (kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z |