题目内容
1.已知约束条件为$\left\{\begin{array}{l}2x-y-6≤0\\ x-y+2≥0\end{array}\right.$,若目标函数z=kx+y仅在交点(8,10)处取得最小值,则k的取值范围为( )| A. | (-2,-1) | B. | (-∞,-2)∪(-1,+∞) | C. | (-∞,-2) | D. | (-1,+∞) |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,结合目标函数z=kx+y仅在交点(8,10)处取得最小值即可求得k的取值范围.
解答 解:由约束条件$\left\{\begin{array}{l}2x-y-6≤0\\ x-y+2≥0\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{2x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得A(8,10),
化目标函数z=kx+y为y=-kx+z,
∵目标函数z=kx+y仅在交点(8,10)处取得最小值,
∴-k>2,则k<-2.
∴k的取值范围为(-∞,-2).
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
6.已知复数z满足:$\frac{{z(1+i){i^3}}}{1-i}=1-i$,则复数z的虚部为( )
| A. | i | B. | -i | C. | 1 | D. | -1 |
13.
2016年10月21日,台风“海马”导致江苏、福建、广东3省11市51个县(市、区)189.9万人受灾,某调查小组调查了受灾某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图.
(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表所示,在表格空白处填写正确数字,并说明能否在犯错误的概率不超过0.05的前提下认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表所示,在表格空白处填写正确数字,并说明能否在犯错误的概率不超过0.05的前提下认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
| 经济损失不超过4000元 | 经济损失超过4000元 | 总计 | |
| 捐款超过500元 | 60 | ||
| 捐款不超过500元 | 10 | ||
| 总计 |
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
11.若集合A={x|x-x2>0},B={x|(x+1)(m-x)>0},则“m>1”是“A∩B≠∅”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |