题目内容
已知数列{an}满足:2an+1an+2an+1-an=0(n∈N*),a1=1,则a5= .
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:把数列递推式变形得到an+1=
,然后结合a1=1求得a5的值.
| an |
| 2an+2 |
解答:
解:由2an+1an+2an+1-an=0(n∈N*),
得
=
+2,即an+1=
.
由a1=1,
得a2=
=
=
,
a3=
=
=
,
a4=
=
=
,
a5=
=
=
.
故答案为:
.
得
| 1 |
| an+1 |
| 2 |
| an |
| an |
| 2an+2 |
由a1=1,
得a2=
| a1 |
| 2a1+2 |
| 1 |
| 2×1+2 |
| 1 |
| 4 |
a3=
| a2 |
| 2a2+2 |
| ||
2×
|
| 1 |
| 10 |
a4=
| a3 |
| 2a3+2 |
| ||
2×
|
| 1 |
| 22 |
a5=
| a4 |
| 2a4+2 |
| ||
2×
|
| 1 |
| 46 |
故答案为:
| 1 |
| 46 |
点评:本题考查数列递推式,考查了学生的计算能力,是中档题.
练习册系列答案
相关题目