题目内容
设数列{an}的首项a1=
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).则满足
<
<
的所有n的和为 .
| 3 |
| 2 |
| 18 |
| 17 |
| S2n |
| Sn |
| 8 |
| 7 |
考点:数列递推式,数列的函数特性
专题:等差数列与等比数列
分析:根据递推数列,得到数列{an}是公比q=
,首项a1=
的等比数列,解不等式即可得到结论.
| 1 |
| 2 |
| 3 |
| 2 |
解答:
解:∵2an+1+Sn=3,
∴2an+2+Sn+1=3,
两式相减得2an+2+Sn+1-2an+1-Sn=0,
即2an+2+an+1-2an+1=0,
则2an+2=an+1,
当n=1时,2a2+a1=3,
则a2=
,满足2a2=a1,
即2an+1=an,则
=
即数列{an}是公比q=
,首项a1=
的等比数列,
则前n项和为Sn=
=3-3•(
)n,
=
=
=1+(
)n,
若
<
<
,
则
<1+(
)n<
,即
<(
)n<
,
则7<2n<17,
则n=3或4,
则3+4=7,
故答案为:7
∴2an+2+Sn+1=3,
两式相减得2an+2+Sn+1-2an+1-Sn=0,
即2an+2+an+1-2an+1=0,
则2an+2=an+1,
当n=1时,2a2+a1=3,
则a2=
| 3 |
| 4 |
即2an+1=an,则
| an+1 |
| an |
| 1 |
| 2 |
即数列{an}是公比q=
| 1 |
| 2 |
| 3 |
| 2 |
则前n项和为Sn=
| ||||
1-
|
| 1 |
| 2 |
| S2n |
| Sn |
3-3•(
| ||
3-3•(
|
1-[(
| ||
1-(
|
| 1 |
| 2 |
若
| 18 |
| 17 |
| S2n |
| Sn |
| 8 |
| 7 |
则
| 18 |
| 17 |
| 1 |
| 2 |
| 8 |
| 7 |
| 1 |
| 17 |
| 1 |
| 2 |
| 1 |
| 7 |
则7<2n<17,
则n=3或4,
则3+4=7,
故答案为:7
点评:本题主要考查递推数列的应用,根据递推数列得到数列{an}是公比q=
,首项a1=
的等比数列是解决本题的关键.
| 1 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目