ÌâÄ¿ÄÚÈÝ
ij²úÆ·Éú²ú³§¼Ò¸ù¾ÝÒÔÍùµÄÉú²úÏúÊÛ¾ÑéµÃµ½ÏÂÃæÓйØÉú²úÏúÊÛµÄͳ¼Æ¹æÂÉ£ºÃ¿Éú²ú²úÆ·x(°Ų̀)£¬×ܳɱ¾ÎªG(x)(ÍòÔª)£¬ÆäÖй̶¨³É±¾Îª2ÍòÔª£¬²¢ÇÒÿÉú²ú1°Ų̀µÄÉú²ú³É±¾Îª1ÍòÔª(×ܳɱ¾£½¹Ì¶¨³É±¾£«Éú²ú³É±¾)£»ÏúÊÛÊÕÈëR(x)(ÍòÔª)Âú×㣺R(x)£½
¼Ù¶¨¸Ã²úÆ·²úÏúƽºâ£¬ÄÇô¸ù¾ÝÉÏÊöͳ¼Æ¹æÂÉÇóÏÂÁÐÎÊÌ⣮
(1) Ҫʹ¹¤³§ÓÐÓ®Àû£¬²úÁ¿xÓ¦¿ØÖÆÔÚʲô·¶Î§ÄÚ£¿
(2) ¹¤³§Éú²ú¶àÉŲ̀²úƷʱ£¬¿ÉʹӮÀû×î¶à£¿
½â£ºÒÀÌâÒ⣬G(x)£½x£«2£¬ÉèÀûÈóº¯ÊýΪf(x)£¬Ôò
f(x)£½![]()
(1) Ҫʹ¹¤³§ÓÐÓ®Àû£¬¼´½â²»µÈʽf(x)>0£¬
µ±0¡Üx¡Ü5ʱ£¬½â²»µÈʽ£0.4x2£«3.2x£2.8>0£¬
¼´x2£8x£«7<0£¬µÃ1<x<7£¬
¡à1<x¡Ü5.
µ±x>5ʱ£¬½â²»µÈʽ8.2£x>0£¬µÃ x<8.2£¬
¡à5<x<8.2.
×ÛÉÏËùÊö£¬ÒªÊ¹¹¤³§Ó®Àû£¬xÓ¦Âú×ã1<x<8.2£¬¼´²úÆ·²úÁ¿Ó¦¿ØÖÆÔÚ´óÓÚ100̨£¬Ð¡ÓÚ820̨µÄ·¶Î§ÄÚ£®
(2)0¡Üx¡Ü5ʱ£¬f(x)£½£0.4(x£4)2£«3.6£¬
¹Êµ±x£½4ʱ£¬f(x)ÓÐ×î´óÖµ3.6£»
¶øµ±x>5ʱ£¬f(x)<8.2£5£½3.2.
ËùÒÔ£¬µ±¹¤³§Éú²ú400̨²úƷʱ£¬Ó®Àû×î¶à£®