题目内容

已知数列{an}的通项公式为an=
1
n+1
,前n项和为Sn.若对于任意正整数n,不等式S2n-Sn
m
16
恒成立,则常数m所能取得的最大整数为
 
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件,推导出S2n-Sn=
1
n+2
+
1
n+3
+…+
1
2n+1
,设bn=S2n-Sn,推导出bn+1-bn=
1
2n+2
+
1
2n+3
-
1
n+2
>0,得到{bn}的最小值是b1,由此能求出结果.
解答: 解:∵数列{an}的通项公式为an=
1
n+1
,前n项和为Sn
Sn=a1+a2+a3+…+an
S2n=a1+a2+a3+…+an+an+1+…+a2n
∴S2n-Sn=an+1+an+2+…+a2n
=(
1
2
+
1
3
+
1
4
+…+
1
n+1
+
1
n+2
+…+
1
2n+1
)-(
1
2
+
1
3
+
1
4
+…+
1
n+1

=
1
n+2
+
1
n+3
+…+
1
2n+1

设bn=S2n-Sn
则bn+1-bn=(
1
n+3
+
1
n+4
+…+
1
2n+1
+
1
2n+2
+
1
2n+3
)-(
1
n+2
+
1
n+3
+…+
1
2n+1

=
1
2n+2
+
1
2n+3
-
1
n+2
>0,
∴{bn}是递增数列
∴{bn}的最小值是b1
∵不等式S2n-Sn
m
16
恒成立,∴b1
m
16

b1=S2-S1=(a
 1
 
 
+a2)-a1=a2=
1
3

1
3
m
16
,解得m<
16
3

∴m的最大值是5.
故答案为:5.
点评:本题考查数列前n项和公式的求法和应用,综合性强,难度较大,对数学思维能力的要求较高,解题时要注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网