题目内容

已知△ABC中,三个内角A,B,C的对边分别为a,b,c.若△ABC的面积为S,且2S=(a+b)2-c2,则tanC等于
 
考点:余弦定理,同角三角函数间的基本关系
专题:三角函数的求值
分析:利用三角形面积公式表示出S,利用余弦定理表示出cosC,变形后代入已知等式,化简求出cosC的值,进而求出sinC的值,即可求出tanC的值.
解答: 解:∵S=
1
2
absinC,cosC=
a2+b2-c2
2ab

∴2S=absinC,a2+b2-c2=2abcosC,
代入已知等式得:2S=a2+b2-c2+2ab,即absinC=2abcosC+2ab,
∵ab≠0,∴sinC=2cosC+2,
∵sin2C+cos2C=1,
∴5cos2C+8cosC+3=0,即(cosC+1)(5cosC+3)=0,
解得:cosC=-1(不合题意,舍去),cosC=-
3
5

∴sinC=
1-cos2C
=
4
5

则tanC=
sinC
cosC
=-
4
3

故答案为:-
4
3
点评:此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网