题目内容

设数列{an}的前n项和为Sn,若Sn=n(n+1)(n∈N*).则an=
 
考点:数列的函数特性
专题:等差数列与等比数列
分析:利用公式an=
S1,n=1
Sn-Sn-1,n≥2
求解.
解答: 解:∵数列{an}的前n项和为Sn,Sn=n(n+1)(n∈N*),
∴a1=S1=1×(1+1)=2,
an=Sn-Sn-1
=[n(n+1)]-[(n-1)n]
=2n.
当n=1时,2n=2=a1
∴an=2n.
故答案为:2n.
点评:本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网