ÌâÄ¿ÄÚÈÝ

ÒÑÖªº¯Êýf£¨x£©=
cosx
x
£¨x£¾0£©£¬g£¨x£©=sinx-ax£¨x£¾0£©£®
£¨¢ñ£©º¯Êýf£¨x£©=
cosx
x
£¨x£¾0£©µÄÁãµã´ÓСµ½´óÅÅÁУ¬¼ÇΪÊýÁÐ{xn}£¬Çó{xn}µÄǰnÏîºÍSn£»
£¨¢ò£©Èôf£¨x£©¡Ýg£¨x£©ÔÚx¡Ê£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©ÉèµãPÊǺ¯Êý¦Õ£¨x£©Óë¦Ø£¨x£©Í¼ÏóµÄ½»µã£¬ÈôÖ±ÏßlͬʱÓ뺯Êý¦Õ£¨x£©£¬¦Ø£¨x£©µÄͼÏóÏàÇÐÓÚPµã£¬ÇÒº¯Êý¦Õ£¨x£©£¬¦Ø£¨x£©µÄͼÏóλÓÚÖ±ÏßlµÄÁ½²à£¬Ôò³ÆÖ±ÏßlΪº¯Êý¦Õ£¨x£©£¬¦Ø£¨x£©µÄ·ÖÇÐÏߣ®
̽¾¿£ºÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃº¯Êýf£¨x£©Óëg£¨x£©´æÔÚ·ÖÇÐÏߣ¿Èô´æÔÚ£¬Çó³öʵÊýaµÄÖµ£¬²¢Ð´³ö·ÖÇÐÏß·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÊýÁÐÓ뺯ÊýµÄ×ÛºÏ,ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ
רÌ⣺µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©¸ù¾Ýº¯ÊýÁãµãµÄ¶¨ÒåµÃ
cosx
x
=0
£¬ÓÉxµÄ·¶Î§ºÍÓàÏÒº¯ÊýµÄÌØÊâÖµ£¬ÅжϳöÊýÁÐ{xn}ÊǵȲîÊýÁУ¬´úÈëµÈ²îÊýÁеÄͨÏʽÇó³öSn£»
£¨¢ò£©ÓÉf£¨x£©¡Ýg£¨x£©·ÖÀë³ö³£Êýa£¬ÔÙ¹¹Ô캯Êý¦Õ(x)=
xsinx-cosx
x2
£¬Çó³öµ¼ÊýÅжϳöµ¥µ÷ÐÔÇó³öº¯ÊýµÄ¼«´óÖµ¡¢×î´óÖµ£¬¼´Çó³öaµÄ·¶Î§£»
£¨¢ó£©¸ù¾ÝÌõ¼þµÃ£º¡°f£¨x£©¡Ýg£¨x£©¡±»ò¡°f£¨x£©¡Üg£¨x£©¡±ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¸ù¾Ý¼«ÏÞ˼Ïë½øÐÐÅųý£¬ÔÙ¸ù¾ÝaµÄ·¶Î§Çó³öº¯ÊýͼÏóµÄ½»µã×ø±ê£¬Çó³öÇÐÏß·½³ÌºóÀûÓõ¼Êý£¬·Ö±ðÅжϳöº¯Êýf£¨x£©¡¢g£¨x£©µÄͼÏóÓëÇÐÏßµÄλÖùØÏµ£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¬
cosx
x
=0
£¨x£¾0£©£¬Ôòcosx=0£¬
¡àx=
¦Ð
2
+k¦Ð£¬Ôòxn=
¦Ð
2
+(n-1)¦Ð
£¬
¡àÊýÁÐ{xn}ÊÇÒÔ¦ÐΪ¹«²î¡¢ÒÔ
¦Ð
2
ΪÊ×ÏîµÄµÈ²îÊýÁУ¬
ÔòSn=
n¦Ð
2
+
n(n-1)¦Ð
2
=
n2¦Ð
2
£»
£¨¢ò£©¡ßf£¨x£©¡Ýg£¨x£©ÔÚx¡Ê£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
¡à
cosx
x
¡Ýsinx-ax
£¬µÃa¡Ý
xsinx-cosx
x2
£¬
Éè¦Õ(x)=
xsinx-cosx
x2
£¬
Ôò¦Õ¡ä(x)=
(xsinx-cosx)¡äx2-(xsinx-cosx)(x2)¡ä
x4

=
cosx(x2+2)
x3

¡ßx£¾0£¬x2+2£¾0£¬
¡à¦Õ£¨x£©ÔÚÇø¼ä(0£¬
¦Ð
2
)
Éϵ¥µ÷µÝÔö£¬ÔÚÇø¼ä(
¦Ð
2
£¬
3¦Ð
2
)
Éϵ¥µ÷µÝ¼õ£¬
ÔÚÇø¼ä(
¦Ð
2
+2k¦Ð£¬
3¦Ð
2
+2k¦Ð)(k¡Êz)
Éϵ¥µ÷µÝ¼õ£¬
ÔÚÇø¼ä(
3¦Ð
2
+2k¦Ð£¬
5¦Ð
2
+2k¦Ð)(k¡Êz)
Éϵ¥µ÷µÝÔö£¬
¡à¦Õ£¨x£©µÄ¼«´óֵΪ¦Õ(
¦Ð
2
+2k¦Ð)
=
1
¦Ð
2
+2k¦Ð
(k¡ÊN)
£¬
¹Ê¦Õ£¨x£©µÄ×î´óֵΪ¦Õ(
¦Ð
2
)=
2
¦Ð
£¬
ËùÒÔa¡Ý
2
¦Ð
£¬
£¨¢ó£©Èôº¯Êýf£¨x£©Óëg£¨x£©´æÔÚ·ÖÇÐÏߣ¬ÔòÓС°f£¨x£©¡Ýg£¨x£©¡±»ò¡°f£¨x£©¡Üg£¨x£©¡±
ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
µ±x¡ú0ʱ£¬f£¨x£©=
cosx
x
¡ú+¡Þ£¬g£¨x£©=sinx-ax¡ú0£¬
¡à?x0¡Ê£¨0£¬?£©Ê¹µÃf£¨x£©£¾g£¨x£©£¬¡àf£¨x£©¡Üg£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϲ»ºã³ÉÁ¢£¬
¡àÖ»ÄÜÊÇf£¨x£©¡Ýg£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
ÓÉ£¨¢ò£©µÃ£¬a¡Ý
2
¦Ð
£¬¡ßº¯Êýf£¨x£©Óëg£¨x£©±ØÐë´æÔÚ½»µã£¬
¡àa=
2
¦Ð
£¬
µ±a=
2
¦Ð
ʱ£¬º¯Êýf£¨x£©Óëg£¨x£©µÄ½»µãΪ£º(
¦Ð
2
£¬0)
£¬
¡àf¡ä(
¦Ð
2
)=-
2
¦Ð
=g¡ä(
¦Ð
2
)
£¬
Ôò´æÔÚÖ±Ïßy=-
2
¦Ð
x+1
ÔÚµã(
¦Ð
2
£¬0)
´¦Í¬Ê±Óëf£¨x£©¡¢g£¨x£©ÏàÇУ¬
¹Ê²Â²âº¯Êýf£¨x£©Óëg£¨x£©·ÖÇÐÏßΪ£ºy=-
2
¦Ð
x+1
£¬Ö¤Ã÷ÈçÏ£º
¢Ù¡ßf(x)-(-
2
¦Ð
x+1)=
cosx+
2
¦Ð
x2-x
x
£¬
Éèh(x)=cosx+
2
¦Ð
x2-x
£¬Ôòh¡ä(x)=-sinx+
4
¦Ð
x-1
£¬
Éèt(x)=-sinx+
4
¦Ð
x-1
£¬Ôòt¡ä(x)=-cosx+
4
¦Ð
£¾0
£¬
¡àh¡ä£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬¡àh¡ä£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬
¡ßh¡ä(
¦Ð
2
)=0
£¬¡àh£¬£¨x£©ÔÚ£¨0£¬
¦Ð
2
£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨
¦Ð
2
£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àh(x)¡Ýh(
¦Ð
2
)=0
£¬¡àf(x)-(-
2
¦Ð
x+1)¡Ý0

¼´f(x)¡Ý-
2
¦Ð
x+1
ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
¡àº¯Êýf£¨x£©µÄͼÏóλÓÚÖ±Ïßy=-
2
¦Ð
x+1
µÄÉÏ·½£¬
¢Ú¡ßg(x)-(-
2
¦Ð
x+1)=sinx-1¡Ü0
ÔÚ£¨0£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
¡àº¯Êýg£¨x£©µÄͼÏóλÓÚÖ±Ïßy=-
2
¦Ð
x+1
µÄÏ·½£¬
ÓÉ´Ë¿ÉÖª£¬º¯Êýf£¨x£©Óëg£¨x£©´æÔÚ·ÖÇÐÏߣºy=-
2
¦Ð
x+1
£¬
µ±a=
2
¦Ð
ʱ£¬º¯Êýf£¨x£©Óëg£¨x£©´æÔÚ·ÖÇÐÏßΪ£ºy=-
2
¦Ð
x+1
£®
µãÆÀ£º±¾Ì⿼²éÈý½Çº¯Êý¡¢µ¼Êý¼°Ó¦Ó㬵ȲîÊýÁеȻù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡¢µÈ¼Ûת»¯ÄÜÁ¦£¬»¯¹éÓëת»¯¡¢º¯ÊýÓë·½³Ì¡¢ÓÐÏÞÓëÎÞÏÞµÈÊýѧ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø