题目内容
13.(Ⅰ)求证:QA为⊙O的切线;
(Ⅱ)若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度.
分析 (Ⅰ)由已知可得QC•QB=QA2,即$\frac{QC}{QA}=\frac{QA}{QB}$,可得△QCA∽△QAB,进而∠QAB=QCA,根据弦切角定理的逆定理可得QA为⊙O的切线;
(Ⅱ)根据弦切角定理可得AC=BC=15,结合(I)中结论,可得QC:QA=AC:AB=15:10,进而得到答案.
解答 证明:(Ⅰ)∵QC2-QA2=BC•QC,
∴QC(QC-BC)=QA2,
即QC•QB=QA2,
于是$\frac{QC}{QA}=\frac{QA}{QB}$,
∴△QCA∽△QAB,
∴∠QAB=QCA,
根据弦切角定理的逆定理可得QA为⊙O的切线,(5分)
解:(Ⅱ)∵QA为⊙O的切线,
∴∠PAC=∠ABC,而AC恰好为∠BAP的平分线,
∴∠BAC=∠ABC,
于是AC=BC=15,
∴QC2-QA2=15QC,①
又由△QCA∽△QAB得
QC:QA=AC:AB=15:10,②
联合①②消掉QC,得QA=18.(10分)
点评 本题考查的知识点是弦切角定理及其逆定理,圆的切线的判定与性质,三角形相似的判定与性质,难度中档.
练习册系列答案
相关题目
3.在△OAB中,O为直角坐标系的原点,A,B的坐标分别为A(3,4),B(-2,y),向量$\overrightarrow{AB}$与x轴平行,则向量$\overrightarrow{OA}$与$\overrightarrow{AB}$所成的余弦值是( )
| A. | -$\frac{\sqrt{3}}{5}$ | B. | $\frac{\sqrt{3}}{5}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |