题目内容
15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=l(a>0,b>0)的一条渐近线与直线2x+y-3=0垂直,则该双曲线的离心率为$\frac{\sqrt{5}}{2}$.分析 利用双曲线的渐近线与直线2x+y-3=0垂直,推出a,b的关系,然后求解双曲线的离心率即可.
解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=l(a>0,b>0)的一条渐近线ay=bx与直线2x+y-3=0垂直,
可得:$\frac{b}{a}=\frac{1}{2}$,可得$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{1}{4}$,解得:e=$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.
点评 本题考查双曲线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
3.已知双曲线Г:4x2-$\frac{{y}^{2}}{{a}^{2}}$=1的左右焦点分别为F1,F2,离心率e=2,若动点P满足$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=$\sqrt{2}$,则直线PF1的倾斜角θ的取值范围为( )
| A. | [0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π) | B. | [$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π) | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$] |
10.已知双曲线mx2-2my2=1的一个焦点坐标为(0,-2),那么常数m=( )
| A. | $\frac{3}{8}$ | B. | -$\frac{3}{8}$ | C. | -$\frac{\sqrt{5}}{4}$ | D. | -$\frac{16}{5}$ |
20.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)-g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立.则( )
| A. | F(x),G(x)都是增函数 | B. | F(x),G(x)都是减函数 | ||
| C. | F(x)是增函数,G(x)是减函数 | D. | F(x)是减函数,G(x)是增函数 |
4.设a,b∈R,则“a>1,且b>1”是“a+b>2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分又不必要条件 |
5.i为虚数单位,负数i2016的共轭复数为( )
| A. | 1 | B. | i | C. | -1 | D. | -i |