题目内容
“|x|≥1”是“x≥1”的( )
| A、充分而不必要条件 |
| B、必要而不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式之间的关系,结合充分条件和必要条件的定义进行判断即可.
解答:
解:若|x|≥1,则x≥1或x≤-1,
即“|x|≥1”是“x≥1”的必要而不充分条件,
故选:B
即“|x|≥1”是“x≥1”的必要而不充分条件,
故选:B
点评:本题主要考查充分条件和必要条件的判断,比较基础.
练习册系列答案
相关题目
设m,n是两条不同的直线,α,β是两个不同的平面.( )
| A、若m∥α,n?α,则m∥n |
| B、若m⊥α,n?α,则m⊥n |
| C、若α∥β,m?α,n?β,则m∥n |
| D、若α⊥β,m?α,n?β,则m⊥n |
函数y=cosx•ln|x|的部分图象大致是下图中的( )
| A、 |
| B、 |
| C、 |
| D、 |
若角α的终边落在直线x+y=0上,则
+
的值等于( )
| |tanα| |
| tanα |
| sinα | ||||
|
| A、2或-2或0 | B、-2或0 |
| C、2或-2 | D、0或2 |
三次函数f(x)=ax3+2x+5在x∈(-∞,+∞)内是增函数,则( )
| A、a>0 | ||
| B、a<0 | ||
| C、a=1 | ||
D、a=
|
曲线x2+y2+4x-4y=0关于( )
| A、直线x=4对称 |
| B、直线x+y=0对称 |
| C、直线x-y=0对称 |
| D、直线(-4,4)对称 |
把函数y=cosx的图象向左平移
个单位,然后把,图象上的所有点的横坐标缩小到原来的
(纵坐标不变),则所得图形对应的函数解析式为( )
| π |
| 4 |
| 1 |
| 2 |
A、y=cos(
| ||||
B、y=cos(2x+
| ||||
C、y=cos(
| ||||
D、y=cos(2x+
|
如图所示是《函数的应用》的知识结构图,如果要加入“用二分法求方程的近似解”,则应该放在( )
| A、“函数与方程”的上位 |
| B、“函数与方程”的下位 |
| C、“函数模型及其应用”的上位 |
| D、“函数模型及其应用”的下位 |