题目内容
20.已知定义在R上的偶函数f(x),当x>0时,f(x)=0.001x,则$f(-\frac{1}{3})$=$\frac{1}{10}$.分析 先由函数是偶函数得f(-x)=f(x),再利用x>0时,f(x)=0.001x,即可求出$f(-\frac{1}{3})$.
解答 解:∵函数y=f(x)是偶函数,
∴f(-x)=f(x),
∵x>0时,f(x)=0.001x,
∴$f(-\frac{1}{3})$=f($\frac{1}{3}$)=$\frac{1}{10}$.
故答案为:$\frac{1}{10}$.
点评 本题考查了函数奇偶性的性质,以及将未知转化为已知的转化化归思想,是个基础题.
练习册系列答案
相关题目
11.从甲、乙、丙三人中任选两人参加社会实践活动,甲被选中的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
15.若非零向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
5.函数f(x)=x2(x-$\frac{2}{x}$)的导数为f′(x),则f′(1)等于( )
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
12.已知点M(a,b)(a>0,b>0)是圆C:x2+y2=1内任意一点,点P(x,y)是圆上任意一点,则ax+by-1的值( )
| A. | 一定等于0 | B. | 一定是负数 | ||
| C. | 一定是正数 | D. | 可能为正数也可能为负数 |