题目内容

已知等差数列{an}的前n项和为Sn,请证明Sn,S2n-Sn,S3n-S2n(n∈N+)成等差数列.
考点:等比数列的性质
专题:证明题,等差数列与等比数列
分析:根据等差数列的性质,推出2(S2n-Sn)=Sn+(S3n-S2n),即可得到Sn,S2n-Sn,S3n-S2n,…为等差数列
解答: 证明:设等差数列an的首项为a1,公差为d,
则Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,
同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,
∴2(S2n-Sn)=Sn+(S3n-S2n),
∴Sn,S2n-Sn,S3n-S2n是等差数列.
点评:此题考查学生灵活运用等差数列的通项与求和,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网