题目内容
已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|,则称f(x)为F函数.给出下列函数:①f(x)=0; ②f(x)=x2; ③f(x)=sinx+cosx;④f(x)=
; ⑤f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是F函数的序号是( )
| x |
| x2+x+1 |
| A、①②④ | B、①②⑤ |
| C、①③④ | D、①④⑤ |
考点:函数的图象
专题:函数的性质及应用
分析:本题是一个新定义的题目,故依照定义的所给的规则对所四个函数进行逐一验证,选出正确的即可.
解答:
解:对于①f(x)=0,显然对任意常数m>0,均成立,故f(x)为F函数;
对于②,|f(x)|<m|x|,显然不成立,故其不是F函数;
对于③,f(x)=sinx+cosx,由于x=0时,|f(x)|<m|x|不成立,故不是F函数;
对于④,f(x)=
,|f(x)|=
•|x|≤
•|x|,故对任意的m>
,都有|f(x)|<m|x|,故其是F函数;
对于④,f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|,令x1=x,x2=0,由奇函数的性质知,f(0)=0,故有|f(x)|<2|x|.显然是F函数
故是F函数的序号是①④⑤,
故选:D.
对于②,|f(x)|<m|x|,显然不成立,故其不是F函数;
对于③,f(x)=sinx+cosx,由于x=0时,|f(x)|<m|x|不成立,故不是F函数;
对于④,f(x)=
| x |
| x2+x+1 |
| 1 |
| x2+x+1 |
| 4 |
| 3 |
| 4 |
| 3 |
对于④,f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|,令x1=x,x2=0,由奇函数的性质知,f(0)=0,故有|f(x)|<2|x|.显然是F函数
故是F函数的序号是①④⑤,
故选:D.
点评:本题考查根据所给的新定义来验证函数是否满足定义中的规则,是函数知识的给定应用题,综合性较强,做题时要注意运用所深知识灵活变化进行证明.
练习册系列答案
相关题目
某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是R(x)=
,则当总利润最大时,每年生产产品的单位数是( )
|
| A、150 | B、200 |
| C、250 | D、300 |
如图,PA是⊙O的切线,A为切点,PC是⊙O的割线,且PB=
BC,则
等于( )

| 1 |
| 2 |
| PA |
| PB |
| A、2 | ||
B、
| ||
| C、1 | ||
D、
|
某演绎推理的“三段”分解如下:①(250-1)不能被2整除;②一切奇数都不能被2整除;③(250-1)是奇数.按照演绎推理的三段论模式,排序正确的是( )
| A、①→②→③ |
| B、③→②→① |
| C、②→①→③ |
| D、②→③→① |
不等式(x-5)(6-x)>6-x的解集是( )
| A、(5,+∞) |
| B、(6,+∞) |
| C、∅ |
| D、(-∞,5),(6,+∞) |
若抛物线y2=ax的焦点与椭圆
+
=1的左焦点重合,则a的值为( )
| x2 |
| 6 |
| y2 |
| 2 |
| A、-8 | B、-16 | C、-4 | D、4 |
已知A、B、C是直线l上不同的三个点,点O不在直线l上,则使等式x2
+x
+
=
成立的实数x的取值集合为( )
| OA |
| OB |
| BC |
| 0 |
| A、{-1} | B、∅ |
| C、{0} | D、{0,-1} |