题目内容
如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.
考点:直线与平面垂直的性质,棱柱、棱锥、棱台的体积
专题:综合题,空间位置关系与距离
分析:(1)连接BC1,则O为B1C与BC1的交点,证明B1C⊥平面ABO,可得B1C⊥AB;
(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,证明△CBB1为等边三角形,求出B1到平面ABC的距离,即可求三棱柱ABC-A1B1C1的高.
(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,证明△CBB1为等边三角形,求出B1到平面ABC的距离,即可求三棱柱ABC-A1B1C1的高.
解答:
(1)证明:连接BC1,则O为B1C与BC1的交点,
∵侧面BB1C1C为菱形,
∴BC1⊥B1C,
∵AO⊥平面BB1C1C,
∴AO⊥B1C,
∵AO∩BC1=O,
∴B1C⊥平面ABO,
∵AB?平面ABO,
∴B1C⊥AB;
(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,
∵BC⊥AO,BC⊥OD,AO∩OD=O,
∴BC⊥平面AOD,
∴OH⊥BC,
∵OH⊥AD,BC∩AD=D,
∴OH⊥平面ABC,
∵∠CBB1=60°,
∴△CBB1为等边三角形,
∵BC=1,∴OD=
,
∵AC⊥AB1,∴OA=
B1C=
,
由OH•AD=OD•OA,可得AD=
=
,∴OH=
,
∵O为B1C的中点,
∴B1到平面ABC的距离为
,
∴三棱柱ABC-A1B1C1的高
.
∵侧面BB1C1C为菱形,
∴BC1⊥B1C,
∵AO⊥平面BB1C1C,
∴AO⊥B1C,
∵AO∩BC1=O,
∴B1C⊥平面ABO,
∵AB?平面ABO,
∴B1C⊥AB;
(2)解:作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,
∵BC⊥AO,BC⊥OD,AO∩OD=O,
∴BC⊥平面AOD,
∴OH⊥BC,
∵OH⊥AD,BC∩AD=D,
∴OH⊥平面ABC,
∵∠CBB1=60°,
∴△CBB1为等边三角形,
∵BC=1,∴OD=
| ||
| 4 |
∵AC⊥AB1,∴OA=
| 1 |
| 2 |
| 1 |
| 2 |
由OH•AD=OD•OA,可得AD=
| OD2+OA2 |
| ||
| 4 |
| ||
| 14 |
∵O为B1C的中点,
∴B1到平面ABC的距离为
| ||
| 7 |
∴三棱柱ABC-A1B1C1的高
| ||
| 7 |
点评:本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目