题目内容

如图,在△ABC中,∠B=
π
3
,AB=8,点D在边BC上,且CD=2,cos∠ADC=
1
7

(1)求sin∠BAD;
(2)求BD,AC的长.
考点:余弦定理的应用
专题:解三角形
分析:根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.
解答: 解:(1)在△ABC中,∵cos∠ADC=
1
7

∴sin∠ADC=
1-cos2∠ADC
=
1-(
1
7
)2
=
48
49
=
4
3
7

则sin∠BAD=sin(∠ADC-∠B)=sin∠ADC•cosB-cos∠ADC•sinB=
4
3
7
×
1
2
-
1
7
×
3
2
=
3
3
14

(2)在△ABD中,由正弦定理得BD=
AB•sin∠BAD
sin∠ADB
=
3
3
14
4
3
7
=3

在△ABC中,由余弦定理得AC2=AB2+CB2-2AB•BCcosB=82+52-2×8×
1
2
=49,
即AC=7.
点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网