题目内容
已知数列{an}中,a1=1,Sn为其前n项和,且对任意r、t∈N*,都有
=(
)2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=
,求数列{bn}的前n项和Tn.
| Sr |
| St |
| r |
| t |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=
| 1 |
| an+12-1 |
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)在
=(
)2中取r=n,t=1求得Sn=n2.然后求出当n≥2时的通项公式,已知n=1时成立后得到数列{an}的通项公式;
(Ⅱ)把数列{an}的通项公式代入bn=
,然后利用裂项相消法数列{bn}的前n项和Tn.
| Sr |
| St |
| r |
| t |
(Ⅱ)把数列{an}的通项公式代入bn=
| 1 |
| an+12-1 |
解答:
解:(Ⅰ)由
=(
)2,得
=n2,而a1=1=S1,∴Sn=n2.
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时该式成立,
∴an=2n-1;
(Ⅱ)bn=
=
=
•
=
(
-
),
∴Tn=
[(1-
)+(
-
)+…(
-
)]=
(1-
)=
.
| Sr |
| St |
| r |
| t |
| Sn |
| S1 |
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时该式成立,
∴an=2n-1;
(Ⅱ)bn=
| 1 |
| an+12-1 |
| 1 |
| (2n+1)2-1 |
| 1 |
| 4 |
| 1 |
| n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+1) |
点评:本题考查了数列递推式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目