题目内容
极坐标方程()表示的图形是( )
A.两个圆 B.两条直线
C.一个圆和一条射线 D.一条直线和一条射线
已知函数则( )
A. B. C. D.
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知函数,其中.定义数列如下:,,.
(1)当时,求,,的值;
(2)是否存在实数,使,,构成公差不为的等差数列?若存在,请求出实数的值;若不存在,请说明理由;
(3)求证:当时,总能找到,使得.
若(),且,则_______________.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆()的左、右焦点分别为、,点,过点且与垂直的直线交轴负半轴于点,且.
(1)求证:△是等边三角形;
(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
(3)设过(2)中椭圆的右焦点且不与坐标轴垂直的直线与交于、两点,是点关于轴的对称点.在轴上是否存在一个定点,使得、、三点共线,若存在,求出点的坐标;若不存在,请说明理由.
在平面直角坐标系中,点和点满足按此规则由点得到点,称为直角坐标平面的一个“点变换”.在此变换下,若,向量与的夹角为,其中为坐标原点,则的值为____________.
设等差数列满足,,的前项和的最大值为,则=__________.
斜率为的直线与焦点在轴上的椭圆交于不同的两点、.若点、在轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为 .
设为单位向量,非零向量,若的夹角为,则 的最大值等于 .