题目内容
12.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的左、右焦点分别为F1、F2,直线l经过F1椭圆于A,B两点,则△ABF2的周长为20.分析 △AF2B为焦点三角形,由椭圆定义可得周长等于两个长轴长,再根据椭圆方程,即可求出△AF2B的周长.
解答 解:由椭圆的焦点在x轴上,a=5,b=2,
∴|AF1|+|AF2|=2a=10,|BF1|+|BF2|═2a=10,
∴△ABF2的周长为|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+|(BF1|+|BF2|)
=4a=20,
故答案为:20.![]()
点评 本题考查椭圆的标准方程,椭圆的定义,焦点三角形周长的求法,考查计算能力,属于基础题.
练习册系列答案
相关题目
2.若数列{an}满足an+12-an2=d(d为正常数,n∈N*),则称{an}为“等方差数列”.甲:数列{an}是等方差数列;乙:数列{an}是等差数列,则( )
| A. | 甲是乙的充分条件但不是必要条件 | |
| B. | 甲是乙的必要条件但不是充分条件 | |
| C. | 甲是乙的充要条件 | |
| D. | 甲既不是乙的充分条件也不是乙的必要条件 |
4.若关于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有两个不等实根,则m的取值范围是( )
| A. | (1,$\sqrt{3}$) | B. | [0,2] | C. | [1,2) | D. | [1,$\sqrt{3}$] |
2.已知向量$\overrightarrow{OA}=(3,1)$,$\overrightarrow{OB}=(-1,3)$,$\overrightarrow{OC}=m\overrightarrow{OA}-n\overrightarrow{OB}$(m>0,n>0),若m+n∈[1,2],则$|\overrightarrow{OC}|$的取值范围是( )
| A. | $[\sqrt{5},2\sqrt{5}]$ | B. | $[\sqrt{5},2\sqrt{10})$ | C. | $(\sqrt{5},\sqrt{10})$ | D. | $[\sqrt{5},2\sqrt{10}]$ |