题目内容

12.设函数f(x)=$\frac{x}{e^x}$,f′(x)为f(x)的导函数,定义f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N*),经计算f1(x)=$\frac{1-x}{e^x}$,f2(x)=$\frac{x-2}{e^x}$,f3(x)=$\frac{3-x}{e^x}$,…,根据以上事实,由归纳可得:当n∈N*时,fn(x)=f(x)=$\frac{n-x}{{e}^{x}}$.

分析 由已知中f(x)=$\frac{x}{e^x}$,记f1(x)=f′(x),f2(x)=f1′(x),…fn+1(x)=fn′(x)(n∈N*),分析出fn(x)解析式随n变化的规律,可得答案.

解答 解:∵f(x)=$\frac{x}{e^x}$,
f1(x)=$\frac{1-x}{e^x}$,f2(x)=$\frac{x-2}{e^x}$,f3(x)=$\frac{3-x}{e^x}$,…,
由此归纳可得:fn(x)=$\frac{n-x}{{e}^{x}}$,
故答案为:f(x)=$\frac{n-x}{{e}^{x}}$.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网