题目内容

20.已知正方形ABCD的对角线AC与BD相交于E点,将△ACD沿对角线折起,使得平面ABC⊥平面ADC(如图),则下列命题中正确的是(  )
A.直线AB⊥直线CD,且直线AC⊥直线BD
B.直线AB⊥平面BCD,且直线AC⊥平面BDE
C.平面ABC⊥平面BDE,且平面ACD⊥BDE
D.平面ABD⊥平面BCD,且平面ACD⊥平面BDE

分析 由直线AB⊥直线CD不成立,知A错误;由直线AB⊥平面BCD不成立,知B错误;由平面ABC⊥平面BDE,且平面ACD⊥平面BDE,知C正确;由平面ABD⊥平面BCD不成立,知D错误.

解答 解:由题意知DC⊥BE,AB∩BE=E,
∴直线AB⊥直线CD不成立,故A错误;
∵AC⊥AB,∴AB与BC不垂直,
∴直线AB⊥平面BCD不成立,故B错误;
∵BE⊥DE,BE⊥AC,∴AC⊥平面BDE,
∴平面ABC⊥平面BDE,且平面ACD⊥平面BDE,故C正确;
∵平面ABD⊥平面BCD不成立,故D错误.
故选:C.

点评 本题考查命题真假的判断,考查空间直线与直线、直线与平面、平面与平面的位置关系,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网