题目内容
4.| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 在①中,由OM∥PD,得到OM∥面PCD;在②中,OM∩平面PBC=M;在③中,由OM∥PD,得OM∥面PCD;在④中,OM∩平面PBA=M.
解答 解:由P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,知:
在①中,∵矩形ABCD中,O是BD中点,M为PB的中点,
∴OM∥PD,又OM?平面PCD,PD?平面PCD,∴OM∥面PCD,故①正确;
在②中,∵OM∩平面PBC=M,∴OM∥面PBC不成立,故②错误;
在③中,∵矩形ABCD中,O是BD中点,M为PB的中点,
∴OM∥PD,又OM?平面PDA,PD?平面PDA,∴OM∥面PCD,故③正确;
在④中,∵OM∩平面PBA=M,∴OM∥面PBA不成立,故④错误.
故选:B.
点评 本题考查命题真判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
11.定义在实数集R上的函数f(x)都可以写为一个奇函数g(x)与一个偶函数h(x)之和的形式,如果f(x)=2x+1,那么( )
| A. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | B. | $g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$ | ||
| C. | $g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$ | D. | $g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$ |
12.在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中有6人患色盲.
(1)根据以上数据建立一个2×2列联表;
(2)若认为“性别与患色盲有关系”,则出错的概率会是多少?
附1:随机变量:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$
附2:临界值参考表:
(1)根据以上数据建立一个2×2列联表;
(2)若认为“性别与患色盲有关系”,则出错的概率会是多少?
附1:随机变量:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$
附2:临界值参考表:
| P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
| x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
16.
已知函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五点法”画出函数在一个周期内的图象;
(2)完整叙述函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的图象可以由函数f(x)=2sinx的图象经过两步怎样的变换得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
(1)用“五点法”画出函数在一个周期内的图象;
(2)完整叙述函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的图象可以由函数f(x)=2sinx的图象经过两步怎样的变换得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
| $\frac{1}{3}$x-$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2 |
| x | $\frac{π}{2}$ | 2π | $\frac{7π}{2}$ | 5π | $\frac{13π}{2}$ |
| y | 0 | 2 | 0 | 2 | 0 |