题目内容

已知P(0,2)已知直线l:y=kx+b与圆C:x2+y2=4相交与A,B两点,当|PA|•|PB|=4时,试证明点P到直线l的距离为定值.
考点:直线和圆的方程的应用
专题:综合题,直线与圆
分析:当|PA|•|PB|=4时,用特殊点法求出点P到直线l的距离,再证明点P到直线l的距离是定值即可.
解答: 解:当|PA|•|PB|=4时,用特殊点法求出点P到直线l的距离为1,如图所示;
现在证明1是点P(0,2)到直线l:y=kx+b=0的距离的定值;
由点P(0,2)到直线l:y=kx+b=0的距离是1,
|-2+b|
1+k2
=1,
∴(b-2)2=1+k2
∴k2=b2-4b+3;
设A(x1,y1),B(x2,y2),
由直线l:y=kx+b与圆C:x2+y2=4,消去y,
得x2+(kx+b)2=4
即(k2+1)x2+2kbx+b2-4=0;
∴x1+x2=-
2kb
k2+1
,x1x2=
b2-4
k2+1

∵|PA|•|PB|=4,∴
x12+(y1-2)2
x22+(y2-2)2
=4,
∴(x12+y12-4y1+4)(x22+y22-4y2+4)=16,
∴(4-4y1+4)(4-4y2+4)=16,
∴(2-y1)(2-y2)=1,
∴y1y2-2(y1+y2)+3=0;
即(kx1+b)(kx2+b)-2(kx1+b+kx2+b)+3=0,
k2x1x2+(kb-2k)(x1+x2)-4b+3=0,
∴k2
b2-4
k2+1
+(kb-2b)•(-
2kb
k2+1
)-4b+3=0,
化简得k2=b2-4b+3;
即证点P到直线l的距离为定值,且定值为1.
点评:本题考查了直线与圆的应用问题,考查了定值的应用问题,用特殊点法求出点P到直线l的距离,再证明点P到直线l的距离是定值是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网