题目内容

11.正项等比数列{an}中,存在两项am、an使得$\sqrt{{a_m}•{a_n}}=2{a_1}$,且a6=a5+2a4,则$\frac{1}{m}+\frac{4}{n}$的最小值是(  )
A.$\frac{3}{2}$B.2C.$\frac{7}{3}$D.$\frac{9}{4}$

分析 由a6=a5+2a4,求出公比q,$\sqrt{{a_m}•{a_n}}=2{a_1}$,确定m,n的关系,然后利用基本不等式即可求出$\frac{1}{m}+\frac{4}{n}$的最小值.

解答 解:在等比数列中,∵a6=a5+2a4
∴a4q2=a4q+2a4
即q2-q-2=0,
解得q=2或q=-1(舍去),
∵$\sqrt{{a_m}•{a_n}}=2{a_1}$,
∴am•an=4${{a}_{1}}^{2}$=${{a}_{2}}^{2}$,
∴m+n=4,
∴$\frac{1}{m}+\frac{4}{n}$=$\frac{1}{4}$($\frac{1}{m}+\frac{4}{n}$)(m+n)=$\frac{1}{4}$+1+$\frac{n}{4m}$+$\frac{m}{n}$≥$\frac{5}{4}$+2$\sqrt{\frac{n}{4m}•\frac{m}{n}}$=$\frac{9}{4}$,当且仅当$\frac{n}{4m}=\frac{m}{n}$,并且m+n=4时取等号.
故选:D.

点评 本题主要考查等比数列的运算性质以及基本不等式的应用,涉及的知识点较多,要求熟练掌握基本不等式成立的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网