题目内容

20.对于下列四个命题
p1:?x∈(0,+∞),($\frac{1}{2}$)x<($\frac{1}{3}$)x   
p2:?x∈(0,1),log${\;}_{\frac{1}{2}}$x>log${\;}_{\frac{1}{3}}$x
p3:?x∈(0,+∞),($\frac{1}{2}$)x>log${\;}_{\frac{1}{2}}$x    
p4:?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x.
其中的真命题是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

分析 根据幂函数的单调性,我们可以判断p1的真假,根据对数函数的单调性,及指数函数的单调性,我们可以判断p2,p3,p4的真假,进而得到答案

解答 解:p1:?x0∈(0,+∞),($\frac{1}{2}$)x0<($\frac{1}{3}$)x0,是假命题,原因是当x0∈(0,+∞),幂函数$y={x}^{{x}_{0}}$在第一象限为增函数;  
p2:?x0∈(0,1),log${\;}_{\frac{1}{2}}$x0>log${\;}_{\frac{1}{3}}$x0,是真命题,如$lo{g}_{\frac{1}{2}}\frac{1}{2}=1>lo{g}_{\frac{1}{3}}\frac{1}{2}=lo{g}_{3}2$;
p3:?x∈(0,+∞),($\frac{1}{2}$)x>log${\;}_{\frac{1}{2}}$x,是假命题,如x=$\frac{1}{2}$时,$(\frac{1}{2})^{\frac{1}{2}}=\frac{\sqrt{2}}{2}<lo{g}_{\frac{1}{2}}\frac{1}{2}$;    
p4:?x∈(0,$\frac{1}{3}$),$\root{3}{\frac{1}{2}}$<$(\frac{1}{2})^{x}$<1,$lo{g}_{\frac{1}{3}}x>1$,是真命题.
故选:D.

点评 本题考查的知识点是命题的真假判断与应用,函数的单调性与特殊点,对数函数的单调性与特殊点,其中熟练掌握指数函数的单调性与对数函数的单调性是解答本题的关键,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网