题目内容

8.命题P:y=ln(x2-kx+2)的定义域为R;命题q:x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则$\frac{(a+b)^{2}}{cd}$≥k+1恒成立,若命题p∨q为真命题,p∧q为假命题,求实数k的取值范围.

分析 先求出命题p,q成立的等价条件,利用p∨q为真命题,p∧q为假命题,确定实数k的取值范围

解答 解:y=ln(x2-kx+2)的定义域为R,
∴x2-kx+2>0恒成立,
∴△=k2-8<0,解的-2$\sqrt{2}$<k<2$\sqrt{2}$,
命题q:x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,
∴$\left\{\begin{array}{l}{x+y=a+b}\\{xy=cd}\end{array}\right.$,
∴$\frac{(a+b)^{2}}{cd}$=$\frac{(x+y)^{2}}{xy}$=$\frac{y}{x}$+$\frac{y}{x}$+2≥4,当且仅当x=y取等号,
∵$\frac{(a+b)^{2}}{cd}$≥k+1恒成立,
∴4≥k+1,
∴k≤3,
∵如果命题p∨q为真命题,p∧q为假命题
∴p、q一真一假
①p真q假,则$\left\{\begin{array}{l}{-2\sqrt{2}<k<2\sqrt{2}}\\{k>3}\end{array}\right.$,那么k的取值范围:φ
②p假q真,则$\left\{\begin{array}{l}{k≤-2\sqrt{2},或k≥2\sqrt{2}}\\{k≤3}\end{array}\right.$,那么k的取值范围:k≤-2$\sqrt{2}$或2$\sqrt{2}$≤a≤3,
故k≤-2$\sqrt{2}$或2$\sqrt{2}$≤a≤3.

点评 本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网