题目内容

过点P(-
3
,1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A、(0,
π
6
]
B、(0,
π
3
]
C、[0,
π
6
]
D、[0,
π
3
]
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得
|
3
k+1|
k2+1
≤1,由此求得斜率k的范围,可得倾斜角的范围.
解答: 解:由题意可得,要求的直线的斜率存在,设为k,则直线方程为y-1=k(x+
3
),
即 kx-y+
3
k+1=0.
根据直线和圆有交点、圆心到直线的距离小于或等于半径可得
|
3
k+1|
k2+1
≤1,
解得0≤k≤
3
,故直线l的倾斜角的取值范围是[0,
π
3
],
故选:D.
点评:本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网