题目内容
13.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+ln x,则f′(2)=( )| A. | -e | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | e |
分析 将f′(2)看出常数利用导数的运算法则求出f′(x),令x=2即可求出f′(2).
解答 解:f′(x)=2f′(2)+$\frac{1}{x}$
令x=2得f′(2)=2f′(2)+$\frac{1}{2}$
∴f′(2)=-$\frac{1}{2}$,
故选:C
点评 本题考查导数的运算法则、考查通过赋值求出导函数值.
练习册系列答案
相关题目
4.下列向量$\overrightarrow a$与$\overrightarrow b$共线(其中向量$\overrightarrow{e_1}与\overrightarrow{e_2}$不共线)的是( )
| A. | $\overrightarrow a=4\overrightarrow{e_1}-5\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+4\overrightarrow{e_2}$ | B. | $\overrightarrow a=\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+3\overrightarrow{e_2}$ | ||
| C. | $\overrightarrow a=\frac{1}{2}\overrightarrow{e_1}+\frac{1}{3}\overrightarrow{e_2},\overrightarrow b=3\overrightarrow{e_1}+2\overrightarrow{e_2}$ | D. | $\overrightarrow a=2\overrightarrow{e_1},\overrightarrow b=-4\overrightarrow{e_2}$ |
1.sin(-375°)=( )
| A. | $\frac{\sqrt{3}-\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{6}-\sqrt{2}}{4}$ | C. | -$\frac{\sqrt{6}+\sqrt{2}}{4}$ | D. | $\frac{\sqrt{3}+\sqrt{2}}{2}$ |
8.若数列{an}的通项公式是an=(-1)n(3n-1),前n项和为Sn,则S11等于( )
| A. | -187 | B. | -2 | C. | -32 | D. | -17 |
18.下列可以作为直线2x-y+1=0的参数方程的是( )
| A. | $\left\{\begin{array}{l}x=1+t\\ y=3+t\end{array}\right.(t为参数)$ | B. | $\left\{\begin{array}{l}x=1-t\\ y=5-2t\end{array}\right.(t为参数)$ | ||
| C. | $\left\{\begin{array}{l}x=1-t\\ y=3-2t\end{array}\right.(t为参数)$ | D. | $\left\{\begin{array}{l}x=2+\frac{{2\sqrt{5}}}{5}t\\ y=5+\frac{{\sqrt{5}}}{5}t\end{array}\right.(t为参数)$ |
3.已知△ABC周长为6,a,b,c分别为角A,B,C的对边,且a,b,c成等比数列,则$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范围为( )
| A. | [2,18) | B. | ($\frac{3(\sqrt{5}-1)}{2}$,2] | C. | [2,$\frac{27-9\sqrt{5}}{2}$) | D. | (2,9-3$\sqrt{5}$) |