题目内容

2.已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)>f′(x)对于x∈R恒成立(e为自然对数的底),则(  )
A.e2015•f(2016)>e2016•f(2015)
B.e2016•f(2016)=e2016•f(2015)
C.e2015•f(2016)<e2016•f(2015)
D.e2015•f(2016)与e2016•f(2015)大小不确定

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,通过求导判断其单调性,从而确定选项.

解答 解:令函数g(x)=$\frac{f(x)}{{e}^{x}}$,由题意,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
从而g(x)在R上单调递减,
∴g(2016)<g(2015).
即$\frac{f(2016)}{{e}^{2016}}$<$\frac{f(2015)}{{e}^{2015}}$,
∴e2015f(2016)<e2016f(2015).
故选:C.

点评 本题是构造函数的常见类型,大多数题型是结合着选项中的结构和题中的条件来构造函数,形式灵活多变,考生需要多看多做多总结,才容易掌握此题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网