题目内容

7.如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N)个点,每个图形总的点数记为an,则a6=15;$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2015}}{a_{2016}}}}$=$\frac{2014}{2015}$.

分析 根据图象的规律可得出通项公式an,根据数列的特点可用列项法求其前n项和的公式,而$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2015}}{a_{2016}}}}$是前2014项的和,代入前n项和公式即可得到答案.

解答 解:每个边有n个点,把每个边的点数相加得3n,这样角上的点数被重复计算了一次,故第n个图形的点数为3n-3,即an=3n-3,∴a6=15;
令Sn=$\frac{1}{1×2}+\frac{1}{2×3}$+…+$\frac{1}{2014×2015}$=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2014}$-$\frac{1}{2015}$=$\frac{2014}{2015}$.
故答案为15;$\frac{2014}{2015}$

点评 本题主要考查简单的和清推理,求等差数列的通项公式和用裂项法对数列进行求和问题,同时考查了计算能力,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网