题目内容

12.已知函数y=xex+x2+2x+a恰有两个不同的零点,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{e}$+1]B.(-∞,$\frac{1}{e}$+1)C.($\frac{1}{e}$+1,+∞)D.($\frac{1}{e}$,+∞)

分析 利用函数的零点就是方程法根,转化求解函数g(x)的值域,然后推出a的范围即可.

解答 解:函数y=xex+x2+2x+a恰有两个不同的零点,
就是xex+x2+2x+a=0恰有两个不同的实数解,
设:g(x)=xex+x2+2x,
则g′(x)=ex+xex+2x+2,
=(x+1)(ex+2),
x<-1,g′(x)<0,函数是减函数,x>-1,g′(x)>0,函数是增函数,
函数的最小值为:g(-1)=-1-$\frac{1}{e}$,
则a<1+$\frac{1}{e}$.
函数y=xex+x2+2x+a恰有两个不同的零点,则实数a的取值范围为:(-∞,$\frac{1}{e}$+1).
故选:B.

点评 本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网