题目内容

已知
a
=(
3
sinx,1),
b
=(cosx,2).
(1)若
a
b
,求tan2x的值;
(2)若f(x)=(
a
-
b
)•
b
,求f(x)的单调递增区间.
考点:平面向量数量积的运算,平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:(1)利用向量共线定理、倍角公式即可得出;
(2)利用数量积运算性质、倍角公式、两角和差的正弦公式可得f(x)=(
a
-
b
)•
b
=
a
b
-
b
2
=sin(2x-
π
6
)
-
5
2
,再利用正弦函数的单调性即可得出.
解答: 解:(1)
a
b
⇒2
3
sinx-cosx=0

tanx=
3
6

tan2x=
2tanx
1-tan2x
=
4
3
11

(2)f(x)=(
a
-
b
)•
b
=
a
b
-
b
2
=
3
sinxcosx+2-cos2x-4
=
3
2
sin2x-
1+cos2x
2
-2
=
3
2
sin2x-
1
2
cos2x-
5
2

=sin(2x-
π
6
)
-
5
2

-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ,k∈Z⇒-
π
6
+kπ≤x≤
π
3
+kπ,k∈Z

所以f(x)的单调递增区间是[-
π
6
+kπ,
π
3
+kπ]k∈Z
点评:本题考查了向量共线定理、倍角公式、数量积运算性质、两角和差的正弦公式、正弦函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网