题目内容

15.已知函数f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{\frac{1}{2}},x>0}\end{array}\right.$,则f[f(-1)]=$\frac{\sqrt{2}}{2}$.

分析 由已知得f(-1)=1-2-1=$\frac{1}{2}$,从而f[f(-1)]=f($\frac{1}{2}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{\frac{1}{2}},x>0}\end{array}\right.$,
f(-1)=1-2-1=$\frac{1}{2}$,
f[f(-1)]=f($\frac{1}{2}$)=$(\frac{1}{2})^{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网