题目内容
函数y=ln(3-2x)的定义域是 .
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:直接由对数式的真数大于0求解x的取值范围得答案.
解答:
解:由3-2x>0,得x<
.
∴原函数的定义域为(-∞,
).
故答案为:(-∞,
).
| 3 |
| 2 |
∴原函数的定义域为(-∞,
| 3 |
| 2 |
故答案为:(-∞,
| 3 |
| 2 |
点评:本题考查了函数的定义域及其求法,是基础题.
练习册系列答案
相关题目
已知函数f(x)=
,则
f(x)dx=( )
|
| ∫ | 1 -1 |
A、
| ||
B、
| ||
C、
| ||
D、
|
满足条件{1,3,5}∪M={1,3,5,7,9}的所有集合M的个数是( )
| A、4个 | B、8个 |
| C、16个 | D、32个 |