ÌâÄ¿ÄÚÈÝ

Èô¸÷ÏîΪÕýÊýµÄÊýÁÐ{an£©µÄǰnÏîºÍΪSn£¬Ê×Ïîa1=1£¬a2=3£¬µãP£¨
Sn+1
£¬Sn+2£©£¨n¡ÊN+£©ÔÚº¯Êýy=£¨x+1£©2µÄͼÏóÉÏ
£¨1£©Çóa3£»
£¨2£©ÇóÊýÁÐ{an£©µÄͨÏʽ£»
£¨3£©ÉèÊýÁÐ{cn£©µÄͨÏʽΪcn=
an
an+t
£¬ÊÇ·ñ´æÔÚÕûÊýt£¬Ê¹µÃÊýÁÐ{cn£©ÖдæÔÚÏîck£¨k¡Ý3£¬k¡ÊN+£©£¬Âú×ãc1£¬c2£¬ck£º¹¹³ÉµÈ²îÊýÁУ¬Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄtµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þµÃSn+2=(
Sn+1
+1)2
£¬Áîn=1£¬Ôòa1+a2+a3=(
a1+a2
+1)2
£¬ÓÉ´ËÄÜÇó³öa3£®
£¨2£©ÓÉSn+2=(
Sn+1
+1)2
£¬µÃ
Sn+2
-
Sn+1
=1
£¬´Ó¶øµÃµ½ÊýÁÐ{
Sn
}ÊÇÒÔ
S1
ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an£©µÄͨÏʽ£®
£¨3£©cn=
2n-1
2n-1+t
£¬ÒªÊ¹c1£¬c2£¬ck³ÉµÈ²îÊýÁУ¬±ØÐë
6
3+t
=
1
1+t
+
2k-1
2k-1+t
£¬ÓÉ´ËÄÜÇó³öËùÓзûºÏÌõ¼þµÄtÖµ£®
½â´ð£º ½â£º£¨1£©¡ßµãP£¨
Sn+1
£¬Sn+2£©£¨n¡ÊN+£©ÔÚº¯Êýy=£¨x+1£©2µÄͼÏóÉÏ£¬
¡àSn+2=(
Sn+1
+1)2
£¬¡­£¨1·Ö£©
Áîn=1£¬ÔòS3=£¨
S2
+1
£©2£¬¡­£¨2·Ö£©
¼´a1+a2+a3=(
a1+a2
+1)2
£¬
¡àa3=(
a1+a2
+1)2-a1-a2
=£¨
1+3
+1)2-1-3=5
2-1-3=5£®¡­£¨3·Ö£©
£¨2£©ÓÉSn+2=(
Sn+1
+1)2
£¬µÃ
Sn+2
-
Sn+1
=1
£®¡­£¨4·Ö£©
ÓÖ
S2
-
S1
=
a1+a2
-
a1
=1
£¬¡­£¨5·Ö£©
¡àÊýÁÐ{
Sn
}ÊÇÒÔ
S1
ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à
Sn
=
S1
+(n-1)¡Á1
£¬¼´Sn=n2£¬¡­£¨6·Ö£©
µ±n¡Ý2ʱ£¬an=Sn-Sn-1
=n2-£¨n-1£©2
=2n-1£¬¡­£¨8·Ö£©
¡ßa1=1Ò²Âú×ãÉÏʽ£¬
¡àan=2n-1£®¡­£¨9·Ö£©
£¨3£©ÓÉ£¨2£©Öª£¬cn=
an
an+t
=
2n-1
2n-1+t
£¬
Ҫʹc1£¬c2£¬ck³ÉµÈ²îÊýÁУ¬±ØÐë2c2=c1+ck£¬
¼´
6
3+t
=
1
1+t
+
2k-1
2k-1+t
£¬¡­£¨10·Ö£©
»¯¼òµÃk=3+
4
t-1
£®¡­£¨12·Ö£©
¡ßk¡Ý3£¬k¡ÊN*£¬ÇÒtΪÕûÊý£¬¡àt-1Ö»ÄÜΪ1£¬2£¬4£¬¡­£¨13·Ö£©
¡àËùÓзûºÏÌõ¼þµÄtֵΪ2£¬3£¬5£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²é·ûºÏÌõ¼þµÄʵÊýÖµÊÇ·ñ´æÔÚµÄÅжÏÓëæË·¨£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ²îÊýÁеÄÐÔÖʵÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø