题目内容

在高为150米的山顶上,测得山下一铁塔的塔顶和塔底的俯角分别为30°和60°,则铁塔的高度为(  )
A、20米
B、100米
C、50米
D、50
3
考点:解三角形的实际应用
专题:计算题,解三角形
分析:设AB为山,CD为塔,Rt△ABD中利用正弦的定义,算出BD=100
3
米.在△BCD中,得到∠C=120°、∠DBC=30°,利用正弦定理列式,解出CD=100米,即塔高为100米.
解答: 解:如图,设AB为山,CD为塔,则
Rt△ABD中,∠ADB=60°,AB=150米
∴sin∠ADB=
3
2
,得BD=100
3

在△BCD中,∠BDC=90°-60°=30°,∠DBC=60°-30°=30°,
∴∠C=180°-30°-30°=120°
由正弦定理,得CD=
BD
sin120°
×sin30°
=100米,即塔高为为100米
故选:B
点评:本题给出实际问题,求距离山远处的一个塔的高,着重考查了直角三角形三角函数的定义和正弦定理解三角形等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网