题目内容

10.设二次函数f(x)满足:对任意x∈R,都有f(x+1)+f(x)=2x2-2x-3
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=a有两个实数根x1,x2,且满足:-1<x1<2<x2,求实数a的取值范围.

分析 (1)设出二次函数,利用函数的解析式,化简表达式,通过比较系数,求出函数的解析式.
(2)利用二次函数根与系数的关系,列出不等式,求解a的范围即可.

解答 解:(1)设f(x)=ax2+bx+c(a≠0),
则f(x+1)+f(x)=2ax2+(2a+2b)x+a+b+2c=2x2-2x-3…3分
所以$\left\{\begin{array}{l}2a=2\\ 2a+2b=-2\\ a+b+2c=-3\end{array}\right.$,解得:a=1,b=-2,c=-1,
从而f(x)=x2-2x-1…7分
(2)令g(x)=f(x)-a=x2-2x-1-a=0
由于-1<x1<2<x2,所以$\left\{\begin{array}{l}g(-1)>0\\ g(2)<0\end{array}\right.$…10分
解得-1<a<2…14分.

点评 本题考查二次函数的性质,函数的解析式的求法,考查计算能力以及转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网