题目内容

3.已知点A(1,1)在矩阵$M=[{\begin{array}{l}1&a\\ 0&b\end{array}}]$对应的变换作用下得到点B(1,2),点B在矩阵$N=[{\begin{array}{l}m&{-1}\\ n&0\end{array}}]$对应的变换作用下得到点C(-2,1),求矩阵MN的逆矩阵.

分析 根据条件,先求出$M=[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,再求出$N=[{\begin{array}{l}0&{-1}\\ 1&0\end{array}}]$,因此得出$MN=[{\begin{array}{l}1&0\\ 0&2\end{array}}][{\begin{array}{l}0&{-1}\\ 1&0\end{array}}]=[{\begin{array}{l}0&{-1}\\ 2&0\end{array}}]$,最后根据逆矩阵定义的得出${[{\begin{array}{l}0&{-1}\\ 2&0\end{array}}]^{-1}}=[{\begin{array}{l}0&{\frac{1}{2}}\\{-1}&0\end{array}}]$.

解答 解:由题意可得,$[{\begin{array}{l}1&a\\ 0&b\end{array}}][\begin{array}{l}1\\ 1\end{array}]=[\begin{array}{l}1+a\\ b\end{array}]=[\begin{array}{l}1\\ 2\end{array}]$,
解得a=0,b=2,所以$M=[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,
又$[{\begin{array}{l}m&{-1}\\ n&0\end{array}}][\begin{array}{l}1\\ 2\end{array}]=[{\begin{array}{l}{m-2}\\ n\end{array}}]=[\begin{array}{l}-2\\ 1\end{array}]$,
解得m=0,n=1,所以$N=[{\begin{array}{l}0&{-1}\\ 1&0\end{array}}]$,
则$MN=[{\begin{array}{l}1&0\\ 0&2\end{array}}][{\begin{array}{l}0&{-1}\\ 1&0\end{array}}]=[{\begin{array}{l}0&{-1}\\ 2&0\end{array}}]$,
所以,矩阵MN的逆矩阵为${[{\begin{array}{l}0&{-1}\\ 2&0\end{array}}]^{-1}}=[{\begin{array}{l}0&{\frac{1}{2}}\\{-1}&0\end{array}}]$.

点评 本题主要考查了矩阵的运算以及逆矩阵的求解,涉及矩阵的运算法则和逆矩阵的定义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网