题目内容
已知α,β∈(
,π),sin(α+β)=-
,sin(β-
)=
,求tan(α-
).
| 3π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 12 |
| 13 |
| π |
| 4 |
考点:两角和与差的正切函数,两角和与差的余弦函数,两角和与差的正弦函数
专题:计算题,三角函数的求值
分析:依题意,可求得cos(α+β)=
,cos(β-
)=-
,利用两角差的正弦可求得sin(α-
)与cos(α-
)的值,从而可得tan(α-
)的值.
| 4 |
| 5 |
| π |
| 4 |
| 5 |
| 13 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:
解:∵α,β∈(
,π),
∴α+β∈(
,2π),
又sin(α+β)=-
,
∴cos(α+β)=
=
;
又sin(β-
)=
,β-
∈(
,
),
∴cos(β-
)=-
=-
,
∴sin(α-
)=sin[(α+β)-(β-
)]
=sin(α+β)cos(β-
)-cos(α+β)sin(β-
)
=-
•(-
)-
•
=-
;
cos(α-
)=cos[(α+β)-(β-
)]
=cos(α+β)cos(β-
)+sin(α+β)sin(β-
)
=
×(-
)+(-
)×
=-
;
∴tan(α-
)=
=
=
.
| 3π |
| 4 |
∴α+β∈(
| 3π |
| 2 |
又sin(α+β)=-
| 3 |
| 5 |
∴cos(α+β)=
| 1-sin2(α+β) |
| 4 |
| 5 |
又sin(β-
| π |
| 4 |
| 12 |
| 13 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
∴cos(β-
| π |
| 4 |
1-sin2(β-
|
| 5 |
| 13 |
∴sin(α-
| π |
| 4 |
| π |
| 4 |
=sin(α+β)cos(β-
| π |
| 4 |
| π |
| 4 |
=-
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 12 |
| 13 |
=-
| 33 |
| 65 |
cos(α-
| π |
| 4 |
| π |
| 4 |
=cos(α+β)cos(β-
| π |
| 4 |
| π |
| 4 |
=
| 4 |
| 5 |
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
=-
| 56 |
| 65 |
∴tan(α-
| π |
| 4 |
sin(α-
| ||
cos(α-
|
-
| ||
-
|
| 33 |
| 56 |
点评:本题考查两角和与差的三角函数,着重考查两角差的余弦,突出考查同角三角函数间的关系,考查化归思想与综合运算能力,属于中档题.
练习册系列答案
相关题目