题目内容

证明:
1+2sin(2π+x)cos(2π+x)
cos2(π+x)-cos2(
π
2
+x)
=
1+tanx
1-tanx
考点:三角函数恒等式的证明
专题:三角函数的求值
分析:直接利用诱导公式化简等式的左侧,利用同角三角函数的基本关系式,推出右侧即可.
解答: 证明:左侧=
1+2sin(2π+x)cos(2π+x)
cos2(π+x)-cos2(
π
2
+x)

=
1+2sinxcosx
cos2x-sin2x

=
cos2x+sin2x+2sinxcosx
cos2x-sin2x

=
(sinx+cosx)(sinx+cosx)
(sinx+cosx)(cosx-sinx)

=
sinx+cosx
cosx-sinx

=
1+tanx
1-tanx
=右侧.
1+2sin(2π+x)cos(2π+x)
cos2(π+x)-cos2(
π
2
+x)
=
1+tanx
1-tanx
成立.
点评:本题考查三角恒等式的证明,同角三角函数的基本关系式的应用,基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网